
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348177953

Coupling economic multi-objective optimization and multiple design options: A

business-oriented approach to size an off-grid hybrid microgrid

Article  in  International Journal of Electrical Power & Energy Systems · May 2021

DOI: 10.1016/j.ijepes.2020.106686

CITATIONS

6
READS

210

5 authors, including:

Some of the authors of this publication are also working on these related projects:

School environment and disability issues in Kabul (Afghanistan): A survey within an emergency project View project

Sustainability after the Thermal Energy Supply in Emergency Situations: The Case Study of Abruzzi Earthquake (Italy) View project

Davide Fioriti

Università di Pisa

49 PUBLICATIONS   303 CITATIONS   

SEE PROFILE

Giovanni Lutzemberger

Università di Pisa

98 PUBLICATIONS   985 CITATIONS   

SEE PROFILE

D. Poli

Università di Pisa

105 PUBLICATIONS   1,411 CITATIONS   

SEE PROFILE

Andrea Micangeli

Sapienza University of Rome

64 PUBLICATIONS   577 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Davide Fioriti on 14 March 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348177953_Coupling_economic_multi-objective_optimization_and_multiple_design_options_A_business-oriented_approach_to_size_an_off-grid_hybrid_microgrid?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348177953_Coupling_economic_multi-objective_optimization_and_multiple_design_options_A_business-oriented_approach_to_size_an_off-grid_hybrid_microgrid?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/School-environment-and-disability-issues-in-Kabul-Afghanistan-A-survey-within-an-emergency-project?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sustainability-after-the-Thermal-Energy-Supply-in-Emergency-Situations-The-Case-Study-of-Abruzzi-Earthquake-Italy?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Fioriti?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Fioriti?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-di-Pisa?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Fioriti?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lutzemberger?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lutzemberger?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-di-Pisa?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lutzemberger?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Poli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Poli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-di-Pisa?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Poli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Micangeli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Micangeli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Micangeli?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Fioriti?enrichId=rgreq-c7427ef433f8a541b30bf6c17d419bf6-XXX&enrichSource=Y292ZXJQYWdlOzM0ODE3Nzk1MztBUzoxMDAxMzU3MzA1NzE2NzQ2QDE2MTU3NTM1OTQ5OTM%3D&el=1_x_10&_esc=publicationCoverPdf


Coupling economic multi-objective optimization and
multiple design options: a business-oriented approach

to optimize an off-grid hybrid microgrid

Davide Fioritia,∗, Giovanni Lutzembergera, Davide Polia,
Pablo Duenas-Martinezb, Andrea Micangelic

aDESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
bMIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Avenue,

02139, Cambridge, MA, United States
cDIMA, ”Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy

Abstract

Achieving the maximum economic profitability is a priority for microgrid de-
velopers. However, although economic indicators usually dominate the business
decision making, rarely numerical indicators are fully able to capture the entire
sociopolitical, technical and geographical circumstances affecting the business
environment, especially in rural areas of developing countries. Typical planning
approaches achieve a single solution, or a set of solutions in multi-objective ap-
proaches, and near-optimal solutions are usually discarded even when they may
better fit the specific multi-faceted circumstances of a project. In this paper,
we propose a multi-objective approach that not only calculates the traditional
Pareto-frontier but also compiles near-optimal solutions that enlarge the options
portfolio for microgrid developers. The proposed iterative approach stores all
the simulated solutions, and post-processes them to provide the developer with
multiple design options (MDO). A numerical case study of a Kenyan hybrid
microgrid using real data confirms that near-optimal solutions can correspond
to extremely different design solutions, even ±100% w.r.t. the Pareto-efficient
ones, with only very limited disparities in the economic objective functions.
The results, supported by a Key Performance Indicator (KPI) analysis, show
that MDO methodology can successfully support the business decision making
and help developers size microgrids considering several nearly-equivalent sizing
options.

Keywords: Multiple Design Options (MDO); multiple sizing choices; solution
pool; hybrid energy system; mini-grid; Multi-Objective Particle Swarm
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Nomenclature

Acronyms

NPC Net Present Cost

CAPEX Investment costs

OPEX Operating expenses

REP/RES Replacement costs and residual value of the assets

MILP Mixed-Integer Linear Programming

MOPSO Multi-Objective Particle Swarm Optimization

MDO Multiple Design Option

DMS Direct Multi Search

NSGA Non-dominated Sorting Genetic Algorithm

LFS Load Following Strategy

ENS Energy Not Served

PV Photovoltaic

KPI Key Performance Indicator

Indices and sets

t ∈ T Index and set of the time steps

y ∈ Y Index and set of the years of the microgrid project

i ∈ I Index and set of piece-wise linear formulation to model fuel costs

a ∈ A Index and set of the assets of the microgrid (D: generator; C: battery
converter; I: inverter; B: battery; RAC/RDC: renewable source at the
AC or DC busbar)

SPF Set of points belonging to the Pareto frontier within the search area

SMDO Set of MDOs selected by the proposed procedure in the search area

Variables and expressions

NPC Net Present Cost

CAPEX Investment costs

OPEXy Operating charges

REPy/RESy Replacement costs and residual value
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Ca,My Yarly operating and maintenance charges of asset a, excluding the fuel
generator

CDt Fuel costs of the fuel generator

CD,Mt Maintenance costs of the fuel generator

CLCt Load curtailment charges

Xa Installed capacity for each technology a

PDt Dispatch of the fuel generator

P
I+/−
t Dispatch of the inverter

P
B+/−
t Dispatch of the battery

P
RAC/RDC
t Dispatch of the renewable assets at the AC/DC busbar

PLt Load

DIA/N (P );DIA/N (P,Q) Absolute (A) or Normalized (N) diversity index of the
points belonging to set P or to the points between set P and Q

ZDt Unit commitment of the fuel-fired generator

Parameters

d Discount factor

ca0 ;xa0 ;βa Parameters to describe the economies of scale and volume of asset a

αD,min Minimum working point of the fuel generator

αB,min/max Minimum and maximum level of the battery storage

p
RAC/RDC
t Specifid renewable production for installed capacity for AC and DC

renewable assets

ηB/I Efficiency of the battery system (round-trip) and of the inverter

πF Fuel costs

cLC Load curtailment charges

cD,Ii ; cD,Si Intercept and slope modelling the piece-wise linear consumption of
the fuel generator
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1. Introduction

1.1. Motivation

The business environment of microgrid developers is known to be very com-
plex and multi-faceted due to the local sociopolitical and geographical frame-
work the technical solution must comply with. This is particularly challenging
in off-grid systems both of developed and developing countries, where the rev-
enue stream can be difficult to predict due to the uncertain load demand, the
precarious continuity of supply and the possible curtailment of exceeding renew-
able production [1]. In this contexts, the optimal sizing of a system cannot but
include non-technical concerns and rarely mathematical formulation are fully
able to capture all the drivers and circumstances of the project.

Multiple-decision making has been widely used to tackle this issue [2], fed
by multi-objective optimization that is able to capture the trade-off between
different numerical indicators/targets [3] and identify the set of solutions that
correspond to non-dominated values of the objective functions [4, 5, 3, 6], where
a point A ”dominates” a solution B when all the objective functions in A are
better or equal than those in B. However, these approaches are objective-centric
and they usually disregard possible multiple designs that can lead to the same
point of the Pareto frontier, as noticed in [7] for a single-objective approach.

In this paper we focus on developing a methodology able to capture multiple
design options that can lead to values as profitable as the points of the Pareto
frontier, so to enhance the design capabilities of microgrid developers.

1.2. Literature review

The business decision making of microgrid developers is typically focused on
economic indicators [8, 9, 10, 11, 12], as private companies are mostly concerned
about making economic profits. However, reliability [13, 9, 12], environmental
[14, 10, 12], technical [15, 12] or socio-political [11, 12] aspects have been increas-
ingly taken into consideration in the decision process, due to policy obligations,
environmental constraints, visibility, among other reasons [12, 16, 17]. More-
over, even when only economic concerns are considered, different indicators may
lead to completely different optimal designs of the system and mislead the de-
veloper [18]; this is why the authors in [18] recommended to use at least two
economic indicators for business projects. Moreover, due to the intrinsic com-
plexities and lack of data, rarely the mathematical modeling is able to capture
all circumstances involved in the optimal sizing of a microgrid, such as avail-
ability of local skills, logistics of the supply chain [7], especially in the difficult
conditions of developing countries [19]. Therefore, according to their expertise
and eventually supported by multi-criteria decision tools [3], developers often
prefer to choose the optimal solution among a set of possible options and multi-
objective optimization is the most appropriate tool, which is enhanced in this
paper to provide additional support for the decision making. In particular, as
rarely combined in the literature of multi-objective optimization [18], we con-
sidered two main economic objective functions: Net Present Cost and CAPEX.
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As reviewed in [20, 21, 12, 6, 3], the literature on multi-objective optimization
for hybrid microgrids is rich and typically all methodologies focus on identifying
the Pareto frontier. However, in [7], the authors first introduced the concept of
”Multiple Design Options” (MDO) and proved that different size configurations
can achieve similar levels of profitability, yet in a single-objective environment.
In particular, the MDO set is a group of configurations, whose objective function
is within a given tolerance from the optimal value [7]. This methodology, based
on Particle Swarm Optimization, iteratively simulates and stored all the inter-
mediate results of the algorithm to be later analyzed by means of basic plots.
The novel idea of this approach is that partially sub-optimal design, which ex-
hibit only a slight worse profitability, but possibly a significantly different size
of components, might be more suitable for a specific project, given some char-
acteristics that can be easily addressed by the human developer but that are
hard to model in mathematical solvers. In fact, non-technical aspects, such as
community engagement, local awareness, political stability, local skills, supply
chain uncertainties, acceptance of the technology, among others [22, 23, 1], play
a paramount role in the success of microgrid projects [24], but they are difficult
to be modelled and quantified. To clarify, let’s suppose that a fully wind-diesel
configuration (A) is selected as optimal by the solver and let’s suppose that
another PV-diesel configuration (B) is only 0.1% more expensive than A. In
this case, the solver would return A as optimal and discard B; however, the
developer would be willing to receive both results to evaluate if the lower main-
tenance complexity and uncertainty of the PV configuration is more suitable for
the investment, also given the labor skills of the population nearby the site of
the project. In this case, configuration B would belong to the MDO set. To the
best of the authors’ knowledge, MDO has been discussed only in [7], where the
authors highlighted that different size configurations can lead to similar values of
the objective function in a single-objective environment by using charts, so that
operators shall select the final solution with a manual procedure, as done also in
[25, 26]. However, such approach focused on a single-objective and was limited
to displaying plots without providing a limited number of options best suited
for the developer. Therefore, that approach can be performed only with simple
configurations and with a limited number of objectives; otherwise the developer
may be unable to manage the corresponding complexities. To the best of the
authors knowledge supported by the literature review [21, 12, 6, 3], no other
paper has proposed an integrated framework to to extend the concept of MDO
to multi-objective approaches, and here we propose to extend the definition of
MDO in a multi-objective environment.

On the algorithmic perspective, the state-of-the-art on multi-objective op-
timization is dominated by (meta-)heuristic methodologies [6, 3], given their
ability to handle complex systems [27, 28, 29]. Mathematical programming,
such as Mixed-Integer Linear Programming (MILP), has been also proposed,
but it usually requires longer computational time and relevant simplifications,
especially when the problem is non-linear, to moderate the computational bur-
den [30, 31], given the intrinsic limitations in the mathematical formulation
[32]. Moreover, according to the study in [33] on home-system management,
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the heuristic formulation of the problem required only 10% of the time of the
MILP procedure, with negligible differences in terms of results. In design ap-
proaches where the size of the problem is larger, the computational requirements
of heuristic problems can be as low as 3% the performances of MILP with equal
optimality of the results [34]. Therefore, a meta-heuristic formulation has been
considered in this study.

Several heuristic methodologies have been proposed for different system
models, however, according to our analysis, no other paper has ever discussed
MDO in a multi-objective perspective [6, 20]. The authors in [29] proposed
a multi-objective analysis based on heuristic methodologies for a hybrid PV-
battery-diesel microgrid in the Gobi Desert and the multi-objective problem is
modeled as a single-objective problem using ε-constraint and Particle Swarm
Optimization method, accounting for emissions, NPC and system reliability.
The authors confirmed that PSO performs better than genetic algorithm or
simulated annealing. The study in [14] went beyond and addressed the possi-
ble installation of distributed PV-battery systems in an off-grid system so to
reduce the levelized cost of electricity and emissions, and increase voltage grid
quality, using Non-dominated Sorting Genetic Algorithm (NSGA); however, no
comparison with the centralized approach is described. The multiple objective
version of PSO has been developed in [35] and successfully applied to various
systems [36, 37, 38, 39]. PV-wind-hydro [36], PV-wind-battery-diesel [37, 40],
microgrids both with reliability and economic objectives have been successfully
addressed by Multi-Objective Particle Swarm Optimization (MOPSO); such
studies highlighted high capabilities of MOPSO to handle large population of
points. MOPSO has also been used for the co-joint planning of wind farms
and PV systems in large farms [41] or the optimal unit commitment subject to
uncertainties [42]; for these reasons, it is regarded as a flexible tool easily able
to handle different systems configurations. The results of the study in [38] con-
firmed MOPSO to achieve a better Pareto frontier than NSGA, except at the
extrema; in [43], MOPSO performed better than all the other multi-objective
methodologies under consideration. Other multi-objective methodologies refer
to Direct Multi-Search (DMS) [18], a modified version of the Cuckoo Search or
Artificial Bee Colony Algorithm [44]; however, given its simplicity, its ability
to easily handle large numbers of the Pareto frontier and its good convergence
performance, MOPSO has been used in our activity.

In the case of off-grid systems, the system management is traditionally per-
formed by using simple priority-list criteria, such as the Load Following Strategy
(LFS) [45, 14, 40]. According to LFS, renewable sources are prioritized and bat-
teries are dispatched to keep the system stable; the fuel-fired generator is turned
on only when the other components cannot meet the demand. More advanced
predictive approaches have also proved to reduce the operating costs even by
8% [34], given the same sizing [34]; however, in terms of Net Present Costs,
the savings with respect to LFS are much more limited (<1-3%) [34, 18]. Sim-
ilar findings are also supported by [46], in which the cost reduction enabled
by predictive scheduling is usually below 3%, except for very large systems in
which savings can scale up to 6%. However, while priority-list approaches re-
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quire limited computational requirements (few minutes), the calculation times
of predictive methodologies are significantly larger (even hours) [34]. In rural
microgrids that are characterized by large uncertainties in forecasting the so-
cial behavior of the community, lack of connectivity, and limited assets, robust
dispatching methodologies are required and usually priority-list approaches are
preferred, so they constitute the state-of-the-art for newly developed systems.
Anyway, as the load grows, forecasting its power profile becomes easier, so pre-
dictive methodologies are worth considering. The study in [34] pointed out that
optimal sizing should be performed by simulating the actual system operation,
otherwise costs could increase even by 15%. Given the limited benefits in terms
of results, the generality of the approach, the limited differences between pre-
dictive and non-predictive methodologies, and the current state-of-the-art of
rural microgrids, in this activity we simulated the realistic operation of a rural
microgrid based on Load Following Strategy.

According to the proposed literature review, no other paper has addressed
the concept of MDO for multi-objective optimization and in this activity we
show the benefits of MDO for an off-grid system in developing country, which
represents a very multifaceted challenge that microgrid developers are facing.

1.3. Contributions

In this paper we develop a multi-objective approach that compiles multiple
design options (MDO) to provide the developers with additional design criteria
that go beyond the traditional Pareto frontier. For the purpose of this activity,
we aspired to improve the preliminary single-objective MDO approach proposed
in [7], so we define MDO as a selected set of points with different design char-
acteristics within a given optimality tolerance from the Pareto frontier. MDOs
are selected thanks to a modified MOPSO algorithm, in which all intermedi-
ate simulated points are stored and post-processed after the convergence of the
methodology. The post-processing phase identifies the final MDO points as
those maximizing selected performance indicators, which are also compared to
the traditional Pareto frontier by means of Key Performance Indicators (KPI),
to support the robustness of our approach. Moreover, a correlation analysis
highlights the trade-off among the size configurations of the components nearby
the Pareto front and supports the planning phase of developers. A sensitivity
analysis is performed on the optimality tolerance to highlight how the size of
the selected points changes. A numerical case study is performed for the case
of a rural PV-Wind-Battery-Diesel microgrid in Kenya.

In short, the main novelties of the paper can be listed as follows.

� Extension of the MDO concept to multi-objective optimization.

� Development of a custom MDO-MOPSO algorithm and a post-processing
procedure to select the MDO points that maximize energy indicators
(maximum PV/wind penetration, minimum ENS, etc.).

� Application of MDO to a multi-source hybrid system, including PV, wind,
battery and fuel-fired generation.
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� Correlation analysis to highlight and quantify the relationship among the
optimal size of the assets with very similar level of profitability.

� Definition of Key Performance Indicators to compare the proposed en-
hanced MDO set of solutions and the traditional Pareto frontier.

Section II shows the microgrid model. Section III discusses the proposed
MDO multi-objective procedure. Section IV and V describe respectively the
case study and the results. Finally, conclusions are drawn.

2. The system model

2.1. Description

Given the sensitive characteristics of the investment and without loss of
generality, in this activity we consider the case of a typical off-grid system in
developing countries, composed by renewable energy and storage units, and a
backup fuel-fired generator. The photovoltaic plant and batteries are coupled
to a DC busbar, while the fuel-fired generator, while other renewable sources
(i.e. wind or hydro) and the inverter are tied at the AC busbar and directly
supply the load, as shown in Fig. 1. The inverter is considered to be grid-
forming so that it can contribute to the system stability, according to the power
and energy limits of the battery and the PV system. The proposed model,
whose mathematical representation is based on [18, 14, 36], is aimed to best
capture the main characteristics of a microgrid project in developing countries
for sizing purposes, so to build a robust framework to discuss and apply the
MDO methodology.

Figure 1: Schematics of the microgrid.
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2.2. Operating strategy

A control system is assumed to coordinate the energy flows and to minimize
the operating costs. Although predictive methodologies have been proposed for
microgrid operation in developing countries [18], the demand forecasting can be
significant uncertain and jeopardize the benefits of complex approaches. Due
to its simplicity, limited hardware requirements and negligible communication
needs, typical rural microgrids are then usually operated by simple operating
rules based on priority-list criteria: all sources are dispatched according to ”if-
then” rules and a merit-order list that typically first exploits the renewable
energies, then batteries and finally the fuel-fired generators [18]. The most
common strategy is the so-called ”Load Following Strategy” (LFS), under which
the fossil-fuel generator is turned on only to supply the load when the other
components cannot. The generator is shut down when batteries and the other
devices are able to keep the system balanced. For these reasons and to represent
a realistic rural system for developing countries, a LFS has been considered in
this paper.

2.3. Mathematical model

The simulations of the microgrid operation have been developed on the basis
of the activity reported in [18] but now expanded to include additional compo-
nents, such as wind turbines. Technical and physical constraints of the system
are considered, whose equations are reported below.

The main economical functions considered in this study are Net Present Cost
(NPC) and investment costs (CAPEX), which are well known in the literature
and of major interest for developers. The mathematical formulation of NPC,
shown in (1), accounts for CAPEX, operating costs OPEXy of the system in
year y, replacement costs REPy of the assets due to aging, and the residual
value of the assets at the end of the project, RESy. The detailed model of
CAPEX, shown in (2), accounts for the economy of scale and volume of each
asset a. CAPEX are modelled with an exponential function in which Ca0 is the
reference cost corresponding to a component of capacity xa0 ; βa, instead, models
the economies of scale and volume. OPEXy accounts for the maintenance costs
of the system (excluding the fuel-fired generator) and Ca,My of all components of

the system and the fuel costs CDt of the generator. The maintenance costs CDMt
of the generator depends upon its actual unit commitment, as described in (4).
The fuel costs CDt detailed in (5) are modelled by using a piece-wise linear cost
function. The load curtailment costs are proportional to the curtailed energy,
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as shown in (6).

NPC = CAPEX +
∑
y∈Y

OPEXy +REPy +RESy
(1 + d)

y (1)

CAPEX =
∑
a∈A

Ca0

(
Xa

xa0

)βa

(2)

OPEXy =
∑

a∈A/{D}

Ca,My +
∑
t∈T

CDt + CD,Mt + CLCt (3)

CMt = cD,MXD
t (4)

CDt ≥ πF
(
cD,Ii XD + cD,Si PDt

)
∀i (5)

CLCt = cLCPLCt (6)

The AC and DC electrical balance are guaranteed by (7) and (8), respec-

tively. PDt is the dispatch of the fuel-fired generator, P
I+/−
t represents the

power supplied by the inverter, PRACt is the actual renewable production in-
jected on the AC busbar (i.e. wind or hydro), PLt denotes the load demand
and PLCt is the load curtailment. The DC balance expressed by equation (8)
accounts for the power PRDCt produced by the renewable assets connected at

the DC busbar, the output of the battery P
B+/−
t and the one of the inverter,

including its efficiency ηI .

PDt + P I+t − P I−t + PRACt = PLt − PLCt (7)

PRDCt + PB+
t − PB−t − P I+t

ηI
+ P I−t ηI = 0 (8)

The simulation tool is developed to guarantee the adequacy of the size of the
components of the system, as detailed in (9)-(13). Variables x represents the
size of the different components: generator (D), battery converter (C), inverter
(I) and renewable assets, be them connected at the AC busbar (RAC) or DC one
(RDC). The dispatching of the fuel generator takes into account the presence of

the technical minimum, when the generator is turned on. Parameters p
RAC/RDC
t

denote the specific renewable production for unit size of the corresponding asset.

αD,minXDZDt ≤ PDt ≤ XDZDt (9)

PB+
t + PB−t ≤ XC (10)

P I+t + P I−t ≤ XI (11)

PRACt ≤ pRACt XRAC (12)

PRDCt ≤ pRDCt XRDC (13)

The energy balance of the battery is modelled by (14), in which EBt rep-
resents the energy available in the battery and ηB is its roundtrip efficiency,
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including the efficiency of the battery converter. The minimum and maximum
state of charge of the battery are guaranteed by equation (15).

EBt = EBt−1 −
PB+
t√
ηB

+ PB−t
√
ηB (14)

αB,minXB ≤ EBt ≤ αB,maxXB (15)

According to LFS [18], the battery keeps the system in balance when a
mismatch between actual energy production and load demand occurs. When
the battery cannot meet the entire demand and the cost of curtailment would
be higher than turning on the generator, the genset kicks in to fill the gap. The
generator is kept off otherwise.

3. The multi-objective methodology

The proposed MDO-MOPSO procedure, shown in Fig. 2, is based on a
modified version of the MOPSO algorithm [47]. In this activity, the classical
version of the MOPSO method, based on [48] and [49], is further enhanced (1) by
including the storage of all partial results simulated in the optimization process,
(2) by improving the convergence metrics, accounting for spread and crowding
distances [50, 51] similarly to NSGA-II [52] and DMS [51], and (3) by including a
post-processing methodology aimed to identify the desired MDOs. Converesely
to [51], a quadratic distance measure has been used; more details about the
procedure are discussed as follows. Being recognized as key criteria for business
investors [18], the objective functions considered in this activity are NPC and
CAPEX; the optimization variables are the size of the main components of the
system (Fig. 1).

The MDO-MOPSO algorithm is released at [53] for public use.

3.1. The optimization algorithm

The core of the proposed MDO-MOPSO procedure, shown in Fig. 2, is a
modified version of the MOPSO algorithm [49], which is the multi-objective
version of the traditional nature-inspired PSO heuristic algorithm that simulates
the behavior of a number of organisms moving according to the local and global
best positions that have been found at a given moment in the search-space [54].
Traditionally, the following steps are performed [49]:

1. Initialize the repository of the Pareto frontier and the working set of non-
dominated size solutions, also referred to as particles, given the search
area of the optimization variables.

2. Initialize the speed and position of each particle.

3. Iterate until convergence criteria are met:

3.1. Update the speed and position of each particle in the working set.
3.2. Apply mutation on particles to avoid falling in local optima.
3.3. Evaluate the objectives for each particle (i.e. NPC and CAPEX).
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Figure 2: The proposed multi-objective MDO-MOPSO methodology.
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3.4. Add non-dominated solutions to the repository.
3.5. When the repository is larger than the desired size of the Pareto

frontier, remove points by using crowding distances.
3.6. Update convergence criteria (i.e. number of iterations).

4. The repository contains the desired Pareto frontier.

In the initialization phase, two sets, i.e. the working set and repository, are
initialized by randomly sample the search space of the optimization variables
(particles). The repository is used to store the updated Pareto frontier at each
iteration, while the working set is used to explore the search space, that has to
be provided to the algorithm. In this study, similarly to [34], the initial search
area is calculated by using simple criteria based on the forecasts of the load and
renewable sources; for example: the peak power of the inverter shall be equal to
the peak power of the demand and the size of the battery shall be proportional
to the daily demand, eventually including a confidence factor (i.e. 30% higher).

Each particle i is represented as a numeric vector whose speed Vi,t and po-
sition Xi,t is updated at each iteration t, according to equations (16) and (17),

where XP,best
i,t is the best position of the particle found till the current itera-

tion, XG,best
t is the non-dominated point corresponding to the current particle,

parameters c1 and c2 are social constants modelling the personal and swarm
confidence, and w represents the inertia of the system [47]. Quantities rA/B,t
are random values extracted with uniform probability in the interval between 0
and 1.

A mutation process occurs in the dataset to avoid the optimizer to stuck
in local optima [47, 49]. The dataset is divided in three categories that are
modified with different rules: the first is not changed, the second one is subject
to a uniform mutation and the third one to a non-uniform mutation.

Vi,t+1 = wVi,t + c1rA,t

(
XP,best
i,t −Xi,t

)
+ c2rB,t

(
XG,best
t −Xi,t

) (16)

Xi,t+1 = Xi,t + VI,t+1 (17)

After the mutation phase, the algorithm simulates the microgrid operation
for the entire optimization period (one year) and calculates the correspondent
objective functions (Net Present Cost and CAPEX). It is worth noticing that
selected data are stored after every simulation so that they can be post-processed
when the multi-objective procedure is finished. In particular, conversely to the
standard MOPSO methodologies [47, 49, 36, 37, 40, 38, 39], in this activity all
the intermediate solutions are stored, as shown in Fig. 2.

When all the particles have been simulated, the repository of the points of the
Pareto frontier is updated. Only the points with higher crowding distance are
kept [47], as done in many multi-objective approaches such as Non-dominated
Sorting Genetic Algorithm (NSGA-II) [55].

Then, the convergence criteria are calculated. Conversely to [47, 49], in
which only the number of iterations is considered, in this activity we introduced
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the spread and the mean of the crowding distances as convergence criteria, which
are used in NSGA-II [52] and DMS [51] algorithms. Furthermore, conversely to
[51], in this activity we considered the quadratic mean instead of the average, to
improve the quality of the frontier. The mathematical expression of the spread
is reported in (18), where µ quantifies if the extreme values of the Pareto frontier
have changed in two consecutive iterations, σ and d̄ are the standard deviation
and arithmetical average of the crowding distances, and Q is the number of
points. The quadratic mean is instead calculated as in (19).

spread =
µ+ σ

µ+Qd̄
(18)

quad mean =

√
1

Q

∑
k

d2k (19)

Finally, iterations stop when one of the following three criteria is met: (1)
maximum number of iterations (100), (2) change of spread measure below
a given relative and absolute tolerance (10−5) [50, 55] or (3) change of the
quadratic mean of the crowding distances below a given absolute and relative
tolerance [50, 51].

The MATLAB code of the MDO-MOPSO algorithm used in this activity
can be found at [53].

3.2. The post-processing

In the post-processing phase, all the designs simulated in the modified MOPSO
algorithm are analyzed along with the final Pareto frontier. In particular, the
targets of this analysis are: (1) selecting a limited set of multiple design options
for developers to highlight different sizing characteristics w.r.t. the points in the
Pareto frontier, but very close in terms of objective functions, (2) highlighting
the trade-off of installing the different components, as delimited by a tolerance
around the objective function values, and (3) comparing the two sets by using
the selected KPIs. The approach is detailed below.

1. Given the Pareto frontier of the objective functions, the developer speci-
fies the portion of the curve most suited for its technical and non-technical
(i.e. financial) circumstances of the specific project. We recommend to
focus on points nearby the Pareto frontier, e.g. within 3% of optimality,
eventually restricting further the extrema of the analysis, for instance im-
posing limits on the other objective functions, such as CAPEX, to identify
MDOs. Furthermore, within this area, the developer can specify narrower
ranges around the objective function values to evaluate the relationship
among the sizing of the components in the nearby of the same point of
the Pareto frontier.

2. Outliers, such as size configurations that include a battery but not its
converter or vice versa, are removed from the analysis.

3. Among the remaining points, the so-called ”extreme designs” are selected
that maximize or minimize energy shares or the size of components; we
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mean, in particular, the largest and the lowest shares of AC and DC renew-
able production, as well as the minimum values of fuel-based generation,
Energy-Not-Served (ENS), CAPEX and NPC. These points are the MDOs
proposed to the developer and complement the options provided by the
Pareto frontier.

4. Evaluation of the KPIs in the specified region, based on Manhattan mea-
sure [56], to compare the diversity characteristics of the original Pareto
frontier and of the enhanced set of the Pareto frontier including the MDO
points, as more detailed below.

5. Finally, the results are shown in plots and tables and compared to the
traditional Pareto frontier.

Several dissimilarities measures are used in the literature [56] and are here
adapted to compare the design characteristics (PV, wind, and battery design,
and diesel production share) of the Pareto points, traditionally calculated in
multi-objective optimization, and the enhanced set including the Pareto points
and the MDOs, performed in the proposed procedure. The Manhattan measure
has been selected because it is sensitive to outliers and easy to appraise, given
its simplicity, with respect to other common metrics, such as cosine distance
[56]. The mathematical representation to calculate the proposed diversity index
(DIA(P )) between points of a set P is detailed in (20), where di(p,Q) quantifies
the normalized diversity between a point p and any point q of set Q based on
Manhattan distance, as detailed in (21); pi and qi represent the component i of
points p and q, respectively. Moreover, it is useful also to define the same KPI
to evaluate the diversity index between two different sets (P and Q) of points,
as detailed in (22). Finally, in order to better compare KPIs corresponding to
sets of different sizes, the normalized KPIs are defined as the absolute values
over the size of the set under consideration, as specified in (23) and (24).

DIA(P ) =
∑
p∈P

di(p, P/p) (20)

di(p,Q) = min
q∈Q

∑
i

|pi − qi|
|qi|

(21)

DIA(P,Q) =
∑
p∈P

di(p,Q/p) (22)

DIN (P ) =
DIA(P )

|P |
(23)

DIN (P,Q) =
DIA(P,Q)

|P |
(24)
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4. Case study

4.1. Contextualization

The methodology discussed in the previous section has been applied to a
case study for a real microgrid in Habaswein, located in a desert area in Eastern
Kenya [34]; given the hybridization process ongoing in Kenyan microgrids [57],
this case study can be representative of several contexts in the region. Real
demand data have been collected and transcribed from the field for the 2014 at
30-min resolution and here averaged for every hour. At the time of measure-
ment, the number of connections was around 2,000, for a total yearly demand of
about 1.1 GWh and a peak power below 300 kW. Due to the location of the site,
the main renewable sources are solar and wind, while no hydro source is avail-
able. Currently, the microgrid could potentially enlarge the existing PV and
wind power plants, whose capacity factors are 20.8% and 31.2%, respectively,
as estimated with the methodology in [58].

In the proposed case study, the PV installation is connected to the DC
busbar, while the wind turbine supplies AC power. A lithium battery storage
is also coupled to the DC busbar through a converter, and a backup diesel
generator is also considered. The topology of the system is the same as depicted
in Fig. 1.

4.2. Test description

The proposed methodology (Fig. 2) has been applied to the previously de-
scribed microgrid. The decision variables are the capacities of the PV plant,
wind farm, battery storage, battery converter, inverter, and diesel generator.
First, the multi-objective optimization algorithm is run, while each sub-optimal
solution is stored. All stored points that are within 3% of optimality of the
Pareto frontier are then selected for post-processing, based on the findings of
[7]; however, a sensitivity analysis is also performed to highlight the size of
the selected points as a function of the optimality tolerance. As developers
are interested in reducing both the total project costs (NPC) and the initial
investment (CAPEX), it is expected that they would choose a design that is a
compromise between the two economic indicator. In this analysis, for instance,
the post-processing analysis narrows down to those solutions whose CAPEX is
between 1 M$ and 1.25 M$, and the corresponding NPC is around 2.5M$. This
range is considered as reasonable for this specific project after consulting with
in-field experts given the partial obtained results (the maximum CAPEX is up
to 1.5M$). In fact, high CAPEX investments expose the company to higher
risks and lower profit-to-investment ratio, as confirmed by the multi-objective
approach developed in [18], yet without a MDO methodology; thus investments
in rural electrification projects are often a compromise between the size of the
initial investment and the profitability of the specific project. Finally, in order
to examine the variation in size of the components nearby the Pareto fron-
tier, an extra analysis has been made on the points at three pre-determinated
CAPEX location (0.5, 0.9 and 1.2 M$) plus a ±20k$ tolerance. Again, these
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three locations have been proposed as representative of a suitable range for typ-
ical microgrid investments, in order to highlight the consistency of the results
along the Pareto frontier.

4.3. Inputs

Table 1: Main parameters of the components.

Asset (a) Si,0; UM
Ci,0 βi Maintenance

Lifetime
[$/UM] [-] [$/UM/y]

PV 1 kW 900 1 10 25y
Wind 1 kW 4000 0.9 80 20y
Battery 1 kWh 750 0.9 3 3000 e.c.*
Bat. conv. 1 kW 1258 0.5 2 15y
Inverter 1 kW 1887 0.5 2 15y
Fuel gen. 1 kW 1000 0.8 0.05$/kW/h 30000h
*Equivalent full cycles at 80% Depth of Discharge

The main economic and technical parameters of the microgrid components
are detailed in Table 1. The roundtrip efficiency of the battery including the
battery converter is 94%, while the one of the inverter is 96%. The efficiency of
the diesel generator is modelled with a piece-wise linear function whose maxi-
mum efficiency is 33% at rated power and the minimum working point is 10%.
The load curtailment cost is 2$/kWh and the fuel price is 0.9$/l. The battery is
operated between 20% and 80% of state of charge so that its lifetime amounts
to 3,000 equivalent full cycles. The discount rate is 8% and the lifetime of the
project is 20 years. The optimizations have been performed at hourly time steps
on a 6-core computer with 16 GB RAM and completed in about 3 minutes.

5. Results

Selected results are shown in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Table 2, Table 3
and Table 4. Fig. 3 reports the Pareto frontier in red, while the sub-optimal
points within 3% tolerance from the frontier are shown in blue. Their generation
share that corresponds to each of these points is plotted in Fig. 4. Fig. 5 details
the size configurations of those solutions in the Pareto frontier and the results
obtained from the post-processing phase. The corresponding numerical results
are detailed in Table 2 and Table 3. Fig. 6 depicts the additional analyses
applied to the points of the areas A, B and C, as defined in Section 4.2 and
highlighted in Fig. 3. Finally, the results of the KPI analysis are reported in
Table 4, while the sensitivity with respect to the number of selected points is
reported in Table 5.
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5.1. Analysis of the Pareto frontier

The frontier depicted in Fig. 3 clearly shows that when the initial investment
is too limited (i.e. below 50 k$) the NPC is significantly high, even beyond 5-
10 M$, due to paramount load curtailment costs. In contrast, increasing the
CAPEX from 60 k$ up to 1.6M$ only halves the NPC. This suggests that
each single optimization (minimizing NPC or CAPEX) would result in extreme
solutions, while a developer would rather choose a point in between so to comply
with the available funding for the initial investment and incur in reasonable
long-term costs.

As CAPEX increases, more renewable assets are installed and the energy
share changes from strictly relying on diesel production (with large values of
ENS when the installed capacity is not enough to meet the load) to an increas-
ing renewable penetration, as shown in Fig. 4. However, it is worth noticing that
trends are not linear and that the points within 3% tolerance provide large vari-
ations in the sizes and in the corresponding energy shares of each component
with respect to the closest point in the Paretor frontier. Most of the varia-
tion and noise are related to PV and wind sizing. Nevertheless, variations of
about 10% in share between renewable sources and diesel production also occur.
This suggests that multiple design solutions may correspond to similar values of
CAPEX and NPC, despite having significant different characteristics in terms
of components. All this confirms the rationality of the proposed methodology
and the practical outcomes of this study. Hence, the need for a methodology as
the one proposed in this paper, which is our major contribution.

Figure 3: The Pareto frontier: the red dots define the Pareto frontier, while the blue points
are within 3% tolerance.

5.2. Selection of extrema points

The points selected by the post-processing as described in Section 3.2 are
shown in Fig. 5 in green. Table 2 details the economics and energy share for each
selection criteria and their numerical values, while Table 3 reports the optimal
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Figure 4: Production share; all points are within 3% tolerance of the Pareto frontier.

sizing. The red dots in Fig. 5 show the Pareto frontier and the rest of the points
are within 3% optimality.

The results in Fig. 5 highlight that the Pareto frontier of the traditional
multi-objective approach does not guarantee to capture all the interesting size
solutions close to the Pareto frontier itself. In fact, the points within 3% op-
timality in Fig. 5 span a very large range of values, while the Pareto frontier
(in red dots) has a rather smooth behavior that does not capture the scattering
of the other points, which instead can be performed by the proposed approach
that has selected the MDO points shown in green.

Fig. 5 shows that the size of the components, even when close to the Pareto
frontier (hence with similar values of objective functions), can exhibit variations
of up to 100% with respect to the ones placed on the Pareto frontier. For exam-
ple, as detailed in Table 2, the solutions minimizing ENS and maximizing the
share of the PV plant are quite close in terms of objective function, but differ
by 24-25% in terms of energy shares of PV and wind sources and ENS in the
latter is about 7 times higher. The design minimizing CAPEX is close to the
one minimizing the PV share, but in the latter wind share is 10% higher than
in the former. Likewise, the design minimizing ENS is very close to the Pareto
frontier (points 3), however the ENS is halved in the MDO solution. The solu-
tion with the highest PV production is comparable with point 3 of the Pareto
frontier, but the corresponding PV production is 20% higher. Therefore, these
results confirm that our approach successfully provides multiple design options
with characteristics significantly different with respect to the optimal Pareto
solutions, without deteriorating the economics of the project. Similar consid-
erations can be performed on the final optimal design of the points belonging
to the Pareto frontier and the selected MDOs, as detailed in Table 3. These
findings confirm the rationality of the proposed approach and the ability of the
proposed approach to help developers in tackling externalities that can hardly
be computed in the objective functions.

Fig. 5d shows that the sizing of the diesel generator is slightly affected by
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CAPEX, since it is relatively cheap to install the generator. However its dis-
patching is significantly affected, given the results of Fig. 4. On the other side,
due to their high investment costs, renewable sources become profitable beyond
100-400 k$ CAPEX, as highlighted in Fig. 5a and Fig. 5b, whereas batteries are
installed only beyond 600-800k$ CAPEX (Fig. 5c). In particular, the general
trend in the installation of such components exhibits a significant non-linear
behavior, mainly due to their investment costs and the correlation between the
renewable production and load, as well as the rest of parameters. In fact, the
equivalent LCOE of the PV production is lower than wind, which is the reason
why PV is installed at lower CAPEX than wind. However, as the PV production
is available only during the day, it is also worthy to install wind turbines later.
Lastly, for higher values of CAPEX, it is profitable to install batteries and defer
the electricity produced by the two renewable sources. This effect is especially
observable for the PV one, as suggested by the large increase in the PV share
as long as batteries are installed. It is worth noticing that as more batteries are
installed, PV source is more likely to be included over wind because the specific
production cost of the former is lower.

Table 2: Economics and energy share of the extreme points selected by the procedure and
points belonging to the Pareto frontier.

Criterion
Economics Shares

NPC CAPEX PV Wind Diesel ENS
[M$] [M$] [%] [%] [%] [%]

min CAPEX 2.31 1.00 21.1 57.1 21.4 0.37
min PV 2.42 1.04 12.0 66.8 20.4 0.82
min ENS 2.29 1.14 32.3 50.1 17.6 0.07
max PV/min Wind 2.28 1.15 56.6 25.8 17.0 0.50
max Wind 2.29 1.18 15.7 68.0 16.0 0.35
min Diesel 2.21 1.24 42.7 44.3 12.5 0.55
min NPC 2.18 1.24 35.4 51.4 12.9 0.21
Pareto 1 2.35 1.03 18.4 60.0 21.4 0.23
Pareto 2 2.27 1.05 21.6 58.6 19.6 0.23
Pareto 3 2.25 1.15 39.0 43.9 17.0 0.15
Pareto 4 2.20 1.17 36.7 48.0 14.8 0.49
Pareto 5 2.19 1.21 46.5 39.2 13.9 0.38

5.3. Trade-off analysis

The three plots reported in Fig. 6 zoom into the points belonging to areas
A, B and C of Fig. 3. First of all, it is worth noticing that each area (A-
C) groups a consistent number of possible designs with similar profitability, as
they are selected according to the small CAPEX and NPC tolerances previously
discussed; at the same time, as shown in Fig. 4 and Fig. 5, the sizes and energy
shares corresponding to the different points are significantly different. Indeed,
the aim of Fig. 6 is to specifically highlight the correlations among the design

20



(a) Size of the PV plant

(b) Size of the wind farm

(c) Size of the battery bank

(d) Size of the diesel generator

Figure 5: Design of the system: the red dots represent the Pareto front, the green ones are
the extreme points selected according to the post-processing approach and the remaining are
the points within 3% tolerance w.r.t. the Pareto front.
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Table 3: Design of the extreme points selected by the procedure and points belonging to the
Pareto frontier.

Criterion
Design

PV Wind Battery DCDC Inv Diesel
[kW] [kW] [kWh] [kW] [kW] [kW]

min CAPEX 246 258 223 108 187 138
min PV 153 358 59 140 133 114
min ENS 272 214 735 151 339 178
max PV/min Wind 387 109 1179 309 168 137
max Wind 208 360 247 111 202 132
min Diesel 396 188 911 131 202 122
min NPC 338 224 828 168 249 149
Pareto 1 196 278 248 415 346 148
Pareto 2 218 266 379 131 150 148
Pareto 3 311 185 833 155 400 162
Pareto 4 322 205 802 152 168 132
Pareto 5 371 164 1012 243 198 138

or production shares of different assets, according to the following scheme: the
size of the and of the wind farm are on the X- and Y-axis, respectively, while
the energy capacity of the storage and the diesel production share are indicated
by the color and the size of the dot, respectively. It is worth noticing that in
the proposed analysis we didn’t consider the size of the diesel generator because
it is only slightly affected by the sizing of the other assets, as shown in Fig. 5d;
rather, we focused on the production share of the fuel generator, which is more
affected as depicted in Fig. 6.

The pictures show a clear trade-off between the design of PV and wind assets:
the larger the PV plant, the smaller the wind farm for a similar value of the
objective functions. It is worth noticing that the slope between the size of the
wind farm and the PV plant reflects the corresponding ratio of the LCOE, which
is around 0.41-0.48 including economies of scale in the range of interest (50-400
kWp of wind farm); in fact, the results suggest that every kWp of PV plant
could be generally replaced by about 0.4-0.43kW of wind turbine, depending on
the size of the wind turbine. Instead, when CAPEX are limited and the size of
batteries is not significant (Fig. 6a), the substitution ratio falls below 0.4 and
exhibits a non-linear behavior, also due to the contemporaneity between the
load profiles and the specific renewable production.

Similarly, the higher the size of the batteries, the lower the sizes of the
PV and wind plants, especially in Fig. 6b and Fig. 6c where batteries become
economically profitable given the corresponding level of CAPEX. Instead, when
CAPEX are low (Fig. 6a), the design of the system rarely includes batteries.

As in Fig. 6a, the use of the generator tends to increase when a renewable
source is predominant over the other and the battery capacity is small, while the
fossil production tends to decrease when the contribution of the two renewable
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(a) Area A

(b) Area B

(c) Area C

Figure 6: Trade-off between the installation of the main components of the system for the
points in the trade-off areas A, B and C.
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sources is more balanced. In cases B and C (Fig. 6b and Fig. 6c), the production
share between the sources is more balanced and storage is often included, thus
the diesel production changes only by 3-4%, while in Fig. 6a the difference
is larger. These analyses can be very interesting for the planning phase of
microgrid projects and can help developers to meet the multifaceted and peculiar
circumstances of the specific business environment in which they are playing.

5.4. KPI analysis

Table 4 highlights the value of the KPI defined in Section 3.2 when applied
to the set of the MDO points and on points (set SPF ) belonging to the Pareto
Frontier in the selected region; while the first row highlights the absolute value
of the KPI, the second row states the specific KPI per point of the set under con-
sideration. The objective of this normalization is to compare sets with different
size.

Table 4: Absolute and normalized KPIs.

DI(SPF ) DI(SPF ∪ SMDO) DI(SMDO, SPF )

Abs. KPI DIA [-] 0.667 1.614 1.067

Norm. KPI DIN [-] 0.133 0.135 0.152

The proposed approach successfully selects points far from the Pareto fron-
tier; in fact, the absolute KPI with the proposed approach (DIA(SPF ∪SMDO))
is almost three times the value with the Pareto frontier only (DIA(SPF )), as
shown in the first row of Table 4. The reason is that the selected MDOs are sig-
nificantly far from the Pareto frontier, as confirmed by the indexDIA(SMDO, SPF )
that quantifies the diversity between sets SMDO and SPF .

The robustness of the proposed approach for this case study is further
confirmed by the normalized KPI with respect to the size of the set under
consideration, shown in the second row of Table 4. In fact, the normalized
KPIs corresponding to the proposed approach (both DIN (SPF ∪ SMDO) and
DIN (SMDO, SPF )) are never lower than in the Pareto frontier case (DIN (SPF )),
which means that not only the same specific diversity has been preserved, but
it is even increased. It is worth noticing that since set SPF ∪ SMDO is com-
posed by a larger set of points (12), while SPF and SMDO amount for 5 and
7, respectively, the corresponding absolute KPI (DIA(SPF ∪ SMDO)) is likely
to be higher; however, thanks to the proposed procedure, the selected MDOs
are so distant that even the normalized KPI with MDO is higher than the one
performed on the Pareto frontier only. In particular, the normalized diversity
index (DIN (SMDO, SPF )) of MDOs is significantly higher than SPF , calculated
on the Pareto frontier set, which confirms that the proposed approach is able
to select adequate different options with respect to the Pareto frontier.

5.5. Sensitivity on the optimality tolerance

In Table 5, we finally show the impact of the optimality tolerance on the
number of points, outliers excluded, selected within the CAPEX range, with the
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goal of justifying the choice of the 3%-tolerance and to show the flexibility of
the approach in identifying multiple possible designs. The results are organized
by CAPEX range because the population of points may differ depending on
the area of the Pareto frontier. The proposed visualization suggests that a
tolerance of 3% is an adequate value to select a large number of possible different
options, without compromising too much the optimality of the results. In fact,
at 1% tolerance, few points are selected beyond 0.6-0.9M$ of investment; with
a tolerance of 5%, or larger, the points selected by the procedure may be too
sub-optimal and hence not attractive for the private developer.

Table 5: Number of size configurations selected in the different CAPEX ranges, as a function
of the optimality tolerance, outliers excluded.

CAPEX range [M$]
Optimality tolerance [%]
1 3 5 10

≤0.3 829 1164 1518 2270
0.3-0.6 223 408 544 937
0.6-0.9 81 295 515 1057
0.9-1.2 63 243 425 848
≥1.2 27 109 237 639

6. Conclusions

The described methodology introduces the concept of multiple design op-
tions for hybrid microgrids with the aim of enhancing the planning capabilities
of developers who are commonly confronting a multi-faceted business environ-
ment that cannot always inputted in optimization models, such as the mainte-
nance complexity, uncertainties in the supply chain, or the availability of local
skills. Conversely to traditional multi-objective approaches that calculate only
the Pareto frontier, the proposed methodology is able to track multiple so-
lutions, nearby the frontier, that have significantly different characteristics in
terms of technology generation and size of components, so that developers can
be provided with a larger number of options to meet the specific requirements of
their investment. Our enhanced multi-objective approach iteratively simulates
many size scenarios and stores the results that are subsequently post-processed.
The final outcome is the identification of design scenarios that exhibit desired
techno-economic features different from the Pareto solutions, without signifi-
cantly affecting the economics of the project.

The results highlighted in this study confirm that many configurations with
different proportion of installed assets can lead to economic results very similar
to the Pareto ones, sometimes even excluding some particular asset from the
design (hence differences of up to 100% in terms of sizing). This implies that
the developer has access to multiple designs that can better meet the specific
circumstances of the project even when these cannot be mathematically included
in the optimization model. In fact, traditional mathematical methods have
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usually disregarded solutions that are slightly sub-optimal even for negligible
amounts, which, however, may be preferable for the developers. The proposed
KPI analysis confirms the validity of our approach.

This study lays the foundations for the development and improvement of
several commercial tools for microgrid developments and can be easily extended
to other research fields, such as for the optimal design of multi-source systems,
eventually including thermal or mass storage, network investment decisions, or
any system in which the same requirement can be met with different types of
assets.
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